论文标题

关于连贯性在Shor算法中的作用

On the Role of Coherence in Shor's Algorithm

论文作者

Ahnefeld, Felix, Theurer, Thomas, Egloff, Dario, Matera, Juan Mauricio, Plenio, Martin B.

论文摘要

Shor的保理算法在所有已知的经典保理算法上提供了超级多项式的加速。在这里,我们解决了哪些量子特性为此提出了这一优势的问题。我们研究了Shor算法的顺序变体,具有固定的总体结构,并在定量上确定了该算法的相干性作用。我们在动态资源理论的框架中分析了该协议,该协议捕获了可以创建和检测连贯性的操作的资源特征。这使我们能够在协议的成功概率上得出较低和上限,这取决于严格定义的连贯性度量作为动态资源。我们将这些界限与协议的经典限制进行了比较,并得出结论,在我们考虑的固定结构中,连贯性是量子资源,它通过从下和更高的上下界定成功概率来决定其性能。因此,我们为连贯性在量子计算中的基本作用提供了新的启示。

Shor's factoring algorithm provides a super-polynomial speed-up over all known classical factoring algorithms. Here, we address the question of which quantum properties fuel this advantage. We investigate a sequential variant of Shor's algorithm with a fixed overall structure and identify the role of coherence for this algorithm quantitatively. We analyze this protocol in the framework of dynamical resource theories, which capture the resource character of operations that can create and detect coherence. This allows us to derive a lower and an upper bound on the success probability of the protocol, which depend on rigorously defined measures of coherence as a dynamical resource. We compare these bounds with the classical limit of the protocol and conclude that within the fixed structure that we consider, coherence is the quantum resource that determines its performance by bounding the success probability from below and above. Therefore, we shine new light on the fundamental role of coherence in quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源