论文标题
嵌入式设备的在线持续学习
Online Continual Learning for Embedded Devices
论文作者
论文摘要
新应用程序,例如家庭机器人,智能手机的用户个性化以及增强/虚拟现实耳机,需要实时的持续学习持续学习。但是,此设置带来了独特的挑战:嵌入式设备的内存和计算能力和常规机器学习模型在更新非平稳数据流时遭受灾难性遗忘的损失。尽管已经开发了几种在线持续学习模型,但它们对嵌入式应用程序的有效性尚未进行严格研究。在本文中,我们首先确定在线持续学习者必须满足以有效执行实时,设备学习的标准。然后,当与移动神经网络一起使用时,我们研究了几种在线连续学习方法的功效。我们衡量他们的性能,内存使用情况,计算要求以及将其推广到分类外输入的能力。
Real-time on-device continual learning is needed for new applications such as home robots, user personalization on smartphones, and augmented/virtual reality headsets. However, this setting poses unique challenges: embedded devices have limited memory and compute capacity and conventional machine learning models suffer from catastrophic forgetting when updated on non-stationary data streams. While several online continual learning models have been developed, their effectiveness for embedded applications has not been rigorously studied. In this paper, we first identify criteria that online continual learners must meet to effectively perform real-time, on-device learning. We then study the efficacy of several online continual learning methods when used with mobile neural networks. We measure their performance, memory usage, compute requirements, and ability to generalize to out-of-domain inputs.