论文标题

平均击中正图的时间公式

Mean hitting time formula for positive maps

论文作者

Lardizabal, C. F., Velázquez, L.

论文摘要

在马尔可夫连锁店的经典理论中,可以研究达到某种选择状态的平均时间,众所周知,在不可还原的有限情况下,可以根据步行的基本矩阵来计算这种数量,如平均点击时间公式所述。在这项工作中,我们提出了一种类似的结构,用于设置不可还原,积极,痕量保存地图。正面地图上的推理概括了针对量子马尔可夫链(S. gudder)提出的一类完全正面地图的量子马尔可夫链的最新结果。这项工作中使用的工具是基于正确选择运营商的块矩阵,部分原因是由于F.A.Grünbaum和其中一位作者,在Banach空间上针对Banach Space上的封闭操作员的Schur功能作品的启发。手头的问题是由量子信息理论的问题激发的,尤其是量子步行的研究,并提供了一个基本背景,在有限图上,量子演变的统计方面可以用基本矩阵来表示,事实证明,这是一种有用的广义倒数,与动力学相关。由于在本文中发现的平均打击时间公式的广泛普遍性,我们已经获得了经典版本的扩展,要么仅假设初始状态的概率分布的知识,要么通过将到达状态放大到状态的子集中。

In the classical theory of Markov chains, one may study the mean time to reach some chosen state, and it is well-known that in the irreducible, finite case, such quantity can be calculated in terms of the fundamental matrix of the walk, as stated by the mean hitting time formula. In this work, we present an analogous construction for the setting of irreducible, positive, trace preserving maps. The reasoning on positive maps generalizes recent results given for quantum Markov chains, a class of completely positive maps acting on graphs, presented by S. Gudder. The tools employed in this work are based on a proper choice of block matrices of operators, inspired in part by recent work on Schur functions for closed operators on Banach spaces, due to F.A.Grünbaum and one of the authors. The problem at hand is motivated by questions on quantum information theory, most particularly the study of quantum walks, and provides a basic context on which statistical aspects of quantum evolutions on finite graphs can be expressed in terms of the fundamental matrix, which turns out to be an useful generalized inverse associated with the dynamics. As a consequence of the wide generality of the mean hitting time formula found in this paper, we have obtained extensions of the classical version, either by assuming only the knowledge of the probabilistic distribution for the initial state, or by enlarging the arrival state to a subset of states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源