论文标题
通过闭环推理提高测试时间性能
Boost Test-Time Performance with Closed-Loop Inference
论文作者
论文摘要
传统的深层模型预测具有单个正向传播的测试样本,但是,这可能不足以预测硬分类的样本。相反,我们的人可能需要在做出最终决定之前多次仔细检查样本。在回收过程中,可以通过参考相关样本来完善/调整预测。由此激励,我们建议以循环方式预测这些硬分类的测试样本,以提高模型性能。但是,这个想法可能会构成一个关键的挑战:如何构建循环推理,以便几乎没有额外的努力来纠正这些硬测试样本上的原始错误预测。为了解决这个问题,我们提出了一种一般的闭环推理(CLI)方法。具体而言,我们首先设计一个过滤标准,以识别需要其他推理循环的硬分类测试样本。对于每个硬样本,我们基于其原始的顶部$ K $预测来构建一个额外的辅助学习任务,以校准模型,然后使用校准模型获得最终预测。 Imagenet(分布测试样品)和Imagenet-C(分布式测试样品)的有希望的结果证明了CLI在改善任何预训练模型的性能方面的有效性。
Conventional deep models predict a test sample with a single forward propagation, which, however, may not be sufficient for predicting hard-classified samples. On the contrary, we human beings may need to carefully check the sample many times before making a final decision. During the recheck process, one may refine/adjust the prediction by referring to related samples. Motivated by this, we propose to predict those hard-classified test samples in a looped manner to boost the model performance. However, this idea may pose a critical challenge: how to construct looped inference, so that the original erroneous predictions on these hard test samples can be corrected with little additional effort. To address this, we propose a general Closed-Loop Inference (CLI) method. Specifically, we first devise a filtering criterion to identify those hard-classified test samples that need additional inference loops. For each hard sample, we construct an additional auxiliary learning task based on its original top-$K$ predictions to calibrate the model, and then use the calibrated model to obtain the final prediction. Promising results on ImageNet (in-distribution test samples) and ImageNet-C (out-of-distribution test samples) demonstrate the effectiveness of CLI in improving the performance of any pre-trained model.