论文标题
无监督的网络超越同质
Unsupervised Network Embedding Beyond Homophily
论文作者
论文摘要
网络嵌入(NE)方法已成为代表复杂网络并从中受益众多任务的主要技术。但是,大多数NE方法都依赖于同质的假设来在监督信号的指导下学习嵌入,从而使无监督的异性场景相对尚未探索。这个问题在存在稀缺标签的领域尤其重要。在这里,我们将无监督的NE任务制定为R-EGO网络歧视问题,并开发了Selene框架,用于与同质和异质的网络学习。具体而言,我们设计了一个双通道功能嵌入管道,以分别使用节点属性和结构信息来区分R-EGO网络。我们采用异性适应的自我监督学习目标功能来优化学习固有节点嵌入的框架。我们表明,Selene的成分提高了节点嵌入的质量,从而促进了连接的杂源淋巴结的歧视。对均匀比率不同的合成数据集和现实世界数据集的全面经验评估验证了Selene在同质和异性含量环境中的有效性,显示出多达12.52%的聚类准确性增长。
Network embedding (NE) approaches have emerged as a predominant technique to represent complex networks and have benefited numerous tasks. However, most NE approaches rely on a homophily assumption to learn embeddings with the guidance of supervisory signals, leaving the unsupervised heterophilous scenario relatively unexplored. This problem becomes especially relevant in fields where a scarcity of labels exists. Here, we formulate the unsupervised NE task as an r-ego network discrimination problem and develop the SELENE framework for learning on networks with homophily and heterophily. Specifically, we design a dual-channel feature embedding pipeline to discriminate r-ego networks using node attributes and structural information separately. We employ heterophily adapted self-supervised learning objective functions to optimise the framework to learn intrinsic node embeddings. We show that SELENE's components improve the quality of node embeddings, facilitating the discrimination of connected heterophilous nodes. Comprehensive empirical evaluations on both synthetic and real-world datasets with varying homophily ratios validate the effectiveness of SELENE in homophilous and heterophilous settings showing an up to 12.52% clustering accuracy gain.