论文标题
抗fiferromagnet的内在纳米级旋转式型结构中的大型异常霍尔效应和各向异性磁化
Large anomalous Hall effect and anisotropic magnetoresistance in intrinsic nanoscale spin-valve-type structure of an antiferromagnet
论文作者
论文摘要
自旋阀是在铁磁体上发现的基于自旋的电子设备的原型,其中抗铁磁铁起着辅助作用。抗磁性旋转型的最新发现表明,单相材料中的抗铁磁顺序仅控制动态运输,而抗铁磁体被认为是自旋技术的有希望的候选者。在这项工作中,我们通过整合纳米级旋转阀型结构并研究由Spin-Flips驱动的各向异性磁性特性,证明了CA0.9SR0.1CO2AS2的巡回反铁磁性功能的基于抗Firomagnet的旋转功能。 1 nm厚的自旋阀样单元的多个堆栈本质地嵌入了抗铁磁旋转结构中。在存在旋转磁场的情况下,对于大型异常的霍尔电导率和各向异性磁倍率,观察到一种新型的自旋阀样操作,其效果在自旋flip跃迁上方最大化。此外,一项联合实验和理论研究提供了一种有效的工具,可以读取各种自旋状态,该方案对于实施广泛的自旋应用程序很有用。
A spin valve is a prototype of spin-based electronic devices found on ferromagnets, in which an antiferromagnet plays a supporting role. Recent findings in antiferromagnetic spintronics show that an antiferromagnetic order in single-phase materials solely governs dynamic transport, and antiferromagnets are considered promising candidates for spintronic technology. In this work, we demonstrated antiferromagnet-based spintronic functionality on an itinerant Ising antiferromagnet of Ca0.9Sr0.1Co2As2 by integrating nanoscale spin-valve-type structure and investigating anisotropic magnetic properties driven by spin-flips. Multiple stacks of 1 nm thick spin-valve-like unit are intrinsically embedded in the antiferromagnetic spin structure. In the presence of a rotating magnetic field, a new type of the spin-valve-like operation was observed for large anomalous Hall conductivity and anisotropic magnetoresistance, whose effects are maximized above the spin-flip transition. In addition, a joint experimental and theoretical study provides an efficient tool to read out various spin states, which scheme can be useful for implementing extensive spintronic applications.