论文标题
均匀的3个manifolds中恒定平均曲率的螺钉运动表面
Screw motion surfaces of constant mean curvature in homogeneous 3-manifolds
论文作者
论文摘要
我们研究了在均匀的3个manifolds $ \ mathbb {e}(κ,τ)$的螺钉运动中,超临界常数平均曲率不变的非微分表面的几何形状,包括非阴性曲率的空间形式。我们提供完整的分类,从而统一并扩展了以前的各种结果。我们给出了Berger Sphere Case的第一个分类,并展示了一个新的螺丝运动CMC表面,称为管。
We study the geometry of non-minimal surfaces of supercritical constant mean curvature invariant under screw motions in the homogeneous 3-manifolds $\mathbb{E}(κ,τ)$ including the space-forms of non-negative curvature. We give a complete classification, thereby unifying and extending various previous results. We give the first classification for the Berger sphere case, and we exhibit a new family of screw motion CMC surfaces, called tubes.