论文标题

水下光场保留:水下成像的神经渲染

Underwater Light Field Retention : Neural Rendering for Underwater Imaging

论文作者

Ye, Tian, Chen, Sixiang, Liu, Yun, Ye, Yi, Chen, Erkang, Li, Yuche

论文摘要

水下图像渲染旨在从给定的干净图像生成真正的水下图像,该图像可以应用于各种实际应用,例如水下图像增强,相机滤镜和虚拟游戏。我们在水下图像渲染中探索了两个不太接触但具有挑战性的问题,即,i)如何通过单个神经网络来渲染各种水下场景? ii)如何从自然示例中自适应地学习水下光场,例如,e。,现实的水下图像?为此,我们提出了一种称为UWNR(水下神经渲染)的水下成像的神经渲染方法。具体而言,UWNR是一个数据驱动的神经网络,它隐含地从真实的水下图像中学习自然退化模型,避免通过手工制作成像模型引入错误的偏见。与现有的水下图像生成方法相比,UWNR利用自然光场模拟水下场景的主要特征。因此,它能够从一个干净的图像和各种逼真的水下图像中合成各种各样的往返图像。广泛的实验表明,我们的方法比以前的方法实现了更好的视觉效果和定量指标。此外,我们采用UWNR来构建一个开放的大型神经渲染水下数据集,其中包含各种各样的水质,称为lnrud。源代码和lnrud可从https://github.com/ephemeral182/uwnr获得。

Underwater Image Rendering aims to generate a true-tolife underwater image from a given clean one, which could be applied to various practical applications such as underwater image enhancement, camera filter, and virtual gaming. We explore two less-touched but challenging problems in underwater image rendering, namely, i) how to render diverse underwater scenes by a single neural network? ii) how to adaptively learn the underwater light fields from natural exemplars, i,e., realistic underwater images? To this end, we propose a neural rendering method for underwater imaging, dubbed UWNR (Underwater Neural Rendering). Specifically, UWNR is a data-driven neural network that implicitly learns the natural degenerated model from authentic underwater images, avoiding introducing erroneous biases by hand-craft imaging models. Compared with existing underwater image generation methods, UWNR utilizes the natural light field to simulate the main characteristics ofthe underwater scene. Thus, it is able to synthesize a wide variety ofunderwater images from one clean image with various realistic underwater images. Extensive experiments demonstrate that our approach achieves better visual effects and quantitative metrics over previous methods. Moreover, we adopt UWNR to build an open Large Neural Rendering Underwater Dataset containing various types of water quality, dubbed LNRUD. The source code and LNRUD are available at https: //github.com/Ephemeral182/UWNR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源