论文标题

通过科学文献的联合嵌入认知科学中的理论和方法:认知控制的示例

Linking Theories and Methods in Cognitive Sciences via Joint Embedding of the Scientific Literature: The Example of Cognitive Control

论文作者

Ansarinia, Morteza, Schrater, Paul, Cardoso-Leite, Pedro

论文摘要

传统上,人类领域专家通过文献评论将认知控制的理论和实践联系在一起。但是,这种方法不足以跟踪不断增长的文学作品。它也可能是偏见的,产生了冗余和混乱。 在这里,我们提出了另一种方法。我们对大量科学文本进行了自动文本分析,以创建任务和构造的共同表示。更具体地说,首先使用基于变形金刚的语言模型将385,705个科学摘要首先映射到嵌入式空间中。然后,使用文档嵌入来识别一个任务构成的图形嵌入,该图形嵌入,该图形在任务上构造,并通过利用图表中的约束随机步行来支持构造的细微含义。 可以查询这种联合任务构成图嵌入,以生成针对特定构造的任务电池,可能会揭示文献中的知识差距,并激发新的任务和新假设。

Traditionally, theory and practice of Cognitive Control are linked via literature reviews by human domain experts. This approach, however, is inadequate to track the ever-growing literature. It may also be biased, and yield redundancies and confusion. Here we present an alternative approach. We performed automated text analyses on a large body of scientific texts to create a joint representation of tasks and constructs. More specifically, 385,705 scientific abstracts were first mapped into an embedding space using a transformers-based language model. Document embeddings were then used to identify a task-construct graph embedding that grounds constructs on tasks and supports nuanced meaning of the constructs by taking advantage of constrained random walks in the graph. This joint task-construct graph embedding, can be queried to generate task batteries targeting specific constructs, may reveal knowledge gaps in the literature, and inspire new tasks and novel hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源