论文标题
基于检索的系统中的公共和私人数据推理
Reasoning over Public and Private Data in Retrieval-Based Systems
论文作者
论文摘要
用户和组织正在从广泛的来源生成不断增加的私人数据。合并私人数据对于个性化开放域应用程序很重要,例如提问,事实检查和个人助理。这些任务的最新系统在产生答案之前,将相关信息明确地从背景语料库中检索到用户问题。虽然今天的检索系统假定语料库完全可以访问,但用户通常无法或不愿意将其私人数据公开到托管公共数据的实体。我们首先定义了针对多个隐私范围的新型检索设置的公私自回归信息检索(Pair)隐私框架。然后,我们认为缺少足够的基准来研究对,因为现有的文本基准需要从单个数据分布中检索。但是,公共和私人数据直观地反映了不同的分布,激励我们创建ConturrentQa,这是第一个需要在多个数据分布中同时检索的文本QA基准。最后,我们表明,当现有系统应用于我们提议的检索环境时,现有系统面临大型隐私与绩效折衷,并调查了如何减轻这些权衡。
Users and organizations are generating ever-increasing amounts of private data from a wide range of sources. Incorporating private data is important to personalize open-domain applications such as question-answering, fact-checking, and personal assistants. State-of-the-art systems for these tasks explicitly retrieve relevant information to a user question from a background corpus before producing an answer. While today's retrieval systems assume the corpus is fully accessible, users are often unable or unwilling to expose their private data to entities hosting public data. We first define the PUBLIC-PRIVATE AUTOREGRESSIVE INFORMATION RETRIEVAL (PAIR) privacy framework for the novel retrieval setting over multiple privacy scopes. We then argue that an adequate benchmark is missing to study PAIR since existing textual benchmarks require retrieving from a single data distribution. However, public and private data intuitively reflect different distributions, motivating us to create ConcurrentQA, the first textual QA benchmark to require concurrent retrieval over multiple data-distributions. Finally, we show that existing systems face large privacy vs. performance tradeoffs when applied to our proposed retrieval setting and investigate how to mitigate these tradeoffs.