论文标题

将库达迁移到oneapi:史密斯 - 水手案例研究

Migrating CUDA to oneAPI: A Smith-Waterman Case Study

论文作者

Costanzo, Manuel, Rucci, Enzo, Sanchez, Carlos Garcia, Naiouf, Marcelo, Prieto-Matias, Manuel

论文摘要

为了面对与异质计算相关的编程挑战,英特尔最近引入了ONEAPI,这是一个新的编程环境,允许在数据并行C ++(DPC ++)语言中开发代码,并在CPU,GPU,GPU,FPGAS等不同设备上运行。为了解决基于CUDA的遗产代码,Oneapi提供了一种兼容性工具(DPCT),可促进向DPC ++的迁移。由于在生物信息学上下文中有大量现有的基于CUDA的软件,因此本文使用DPCT介绍了我们的经验移植SW#DB(一种众所周知的序列对齐工具)。从实验工作中,可以证明DPCT对SW#DB代码迁移的有用性和迁移的DPC ++代码的跨GPU供应商的跨架构可移植性。此外,性能结果表明,迁移的DPC ++代码报告与其CUDA本地的效率率相似,甚至在某些测试中甚至更好(大约+5%)。

To face the programming challenges related to heterogeneous computing, Intel recently introduced oneAPI, a new programming environment that allows code developed in Data Parallel C++ (DPC++) language to be run on different devices such as CPUs, GPUs, FPGAs, among others. To tackle CUDA-based legacy codes, oneAPI provides a compatibility tool (dpct) that facilitates the migration to DPC++. Due to the large amount of existing CUDA-based software in the bioinformatics context, this paper presents our experiences porting SW#db, a well-known sequence alignment tool, to DPC++ using dpct. From the experimental work, it was possible to prove the usefulness of dpct for SW#db code migration and the cross-GPU vendor, cross-architecture portability of the migrated DPC++ code. In addition, the performance results showed that the migrated DPC++ code reports similar efficiency rates to its CUDA-native counterpart or even better in some tests (approximately +5%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源