论文标题

审查医疗应用的分解方法 - 解决医疗保健中生成模型的戈迪安结

Review of Disentanglement Approaches for Medical Applications -- Towards Solving the Gordian Knot of Generative Models in Healthcare

论文作者

Fragemann, Jana, Ardizzone, Lynton, Egger, Jan, Kleesiek, Jens

论文摘要

深度神经网络通常用于医疗目的,例如产生图像,分割或分类。除此之外,他们通常会被批评为黑匣子,因为他们的决策过程通常不可解释。鼓励潜在的生成模型被解散,提供了控制和解释性的新观点。了解数据生成过程可以帮助创建人工医疗数据集,而不会违反患者隐私,综合不同的数据模式或发现数据生成特征。这些特征可能会揭示可能与遗传特征或患者结局有关的新型关系。在本文中,我们全面概述了流行的生成模型,例如生成对抗网络(GAN),变分自动编码器(VAE)和基于流量的模型。此外,我们总结了分解的不同概念,审查方法可以解散潜在空间表示和指标以评估分解程度。在介绍了理论框架之后,我们概述了最近的医疗应用,并讨论了分解方法对医疗应用的影响和重要性。

Deep neural networks are commonly used for medical purposes such as image generation, segmentation, or classification. Besides this, they are often criticized as black boxes as their decision process is often not human interpretable. Encouraging the latent representation of a generative model to be disentangled offers new perspectives of control and interpretability. Understanding the data generation process could help to create artificial medical data sets without violating patient privacy, synthesizing different data modalities, or discovering data generating characteristics. These characteristics might unravel novel relationships that can be related to genetic traits or patient outcomes. In this paper, we give a comprehensive overview of popular generative models, like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Flow-based Models. Furthermore, we summarize the different notions of disentanglement, review approaches to disentangle latent space representations and metrics to evaluate the degree of disentanglement. After introducing the theoretical frameworks, we give an overview of recent medical applications and discuss the impact and importance of disentanglement approaches for medical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源