论文标题

用机器学习的结构化极化的工程波前

Engineering wavefronts with machine learned structured polarization

论文作者

Kottapalli, Sai Nikhilesh Murty, Song, Alexander, Fischer, Peer

论文摘要

传统上,波前塑形的光学方法依赖于通过全息技术的相位调制。塑造相确定波的衍射,从而确定其在空间中的强度分布。相反,我们表明塑造极化引入了一个新型框架,该框架允许对极化的空间调制以控制波前传播和产生的振幅分布。我们开发了两种不同的计算相检索方法来计算所需的极化转换并实验验证这些变化。第一种方法扩展了已建立的Gerchberg-Saxton算法,而第二种方法采用机器学习优化来确定最佳的极化模式。通过使用单个极化面膜同时实施振幅和极化控制,与传统方法相比,我们的方法显着降低了系统的复杂性。我们的实验结果表明,基于极化的波前形状是传统技术的有效替代方案的潜力,为光学操作和成像中的应用铺平了道路。

Optical approaches for wavefront shaping traditionally rely on phase modulation through holographic techniques. Shaping the phase determines a wave's diffraction and hence its intensity distribution in space. We instead show that shaping the polarization introduces a novel framework that permits the spatial modulation of polarization to control wavefront propagation and resulting amplitude distributions. We develop two distinct computational phase retrieval approaches for calculating the required polarization transformations and experimentally validate these. The first method extends the established Gerchberg-Saxton algorithm, while the second employs machine learning optimization to determine optimal polarization patterns. By implementing both amplitude and polarization control simultaneously using a single polarization mask, our approach significantly reduces system complexity compared to traditional methods. Our experimental results demonstrate the potential of polarization-based wavefront shaping as an efficient alternative to conventional techniques, paving the way for applications in optical manipulation and imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源