论文标题

用于多次测试的本地自适应算法,具有网络结构

A Locally Adaptive Algorithm for Multiple Testing with Network Structure

论文作者

Liang, Ziyi, Cai, T. Tony, Sun, Wenguang, Xia, Yin

论文摘要

将辅助信息与主要数据一起纳入可以显着提高同时推断的准确性。但是,现有的多个测试方法在有效地合并复杂的侧面信息时面临挑战,尤其是当它在维度或结构与主要数据(例如网络侧信息)方面有所不同时。本文介绍了局部自适应结构学习算法(LASLA),这是一个灵活的框架,旨在将广泛的辅助信息集成到推理过程中。尽管拉斯拉是由网络结构数据所带来的挑战专门的,但它也证明了在其他类型的侧面信息(例如空间位置和多个辅助序列)中非常有效的。 Lasla采用了$ P $ - 价值加权方法,利用结构见解来得出数据驱动的权重,以优先考虑不同假设的重要性。我们的理论分析表明,在独立或弱依赖的$ p $价值下,拉斯拉渐近地控制错误的发现率(FDR),并且在辅助数据提供有价值的侧面信息的情况下,可以实现增强的功率。进行了仿真研究以评估拉斯拉的数值性能,并通过两个现实世界的应用进一步说明了其功效。

Incorporating auxiliary information alongside primary data can significantly enhance the accuracy of simultaneous inference. However, existing multiple testing methods face challenges in efficiently incorporating complex side information, especially when it differs in dimension or structure from the primary data, such as network side information. This paper introduces a locally adaptive structure learning algorithm (LASLA), a flexible framework designed to integrate a broad range of auxiliary information into the inference process. Although LASLA is specifically motivated by the challenges posed by network-structured data, it also proves highly effective with other types of side information, such as spatial locations and multiple auxiliary sequences. LASLA employs a $p$-value weighting approach, leveraging structural insights to derive data-driven weights that prioritize the importance of different hypotheses. Our theoretical analysis demonstrates that LASLA asymptotically controls the false discovery rate (FDR) under independent or weakly dependent $p$-values, and achieves enhanced power in scenarios where the auxiliary data provides valuable side information. Simulation studies are conducted to evaluate LASLA's numerical performance, and its efficacy is further illustrated through two real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源