论文标题
具有低规律系数的动力学SDE的热核和梯度估计值
Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients
论文作者
论文摘要
我们建立了热核和梯度估计值,即动力学归化kolmogorov随机分化方程。我们的结果是在某种程度上确保SDE较弱的假设下建立的。
We establish heat kernel and gradient estimates for the density of kinetic degenerate Kolmogorov stochastic differentia equations. Our results are established under somehow minimal assumptions that guarantee the SDE is weakly well posed.