论文标题
比较$π$ -calculus和CCS的表现力
Comparing the expressiveness of the $π$-calculus and CCS
论文作者
论文摘要
本文表明,具有隐式匹配的$π$ -Calculus不比CCS $γ$表达更多,CCS $γ$是CCS的一种变体,其中两个动作同步的结果本身就是重新定位或限制的动作,而不是无声动作$τ$。这是通过展示从$π$ -calculus的构图翻译来完成的,该翻译与CCS $γ$具有隐式匹配,这是有效的,可以实现强刺的双性异性。整个$π$ -calculus可以在CCS $γ$中类似地表达,并随着Meije的触发操作而富含。我还表明,这些结果不能用CCS在CCS $γ$的角色中重新创建,甚至还不能减少等效性,甚至不适合不受限制或复制的异步$π$ -CALCULUS。最后,我观察到CCS不能在$π$ -calculus中编码。
This paper shows that the $π$-calculus with implicit matching is no more expressive than CCS$γ$, a variant of CCS in which the result of a synchronisation of two actions is itself an action subject to relabelling or restriction, rather than the silent action $τ$. This is done by exhibiting a compositional translation from the $π$-calculus with implicit matching to CCS$γ$ that is valid up to strong barbed bisimilarity. The full $π$-calculus can be similarly expressed in CCS$γ$ enriched with the triggering operation of Meije. I also show that these results cannot be recreated with CCS in the role of CCS$γ$, not even up to reduction equivalence, and not even for the asynchronous $π$-calculus without restriction or replication. Finally I observe that CCS cannot be encoded in the $π$-calculus.