论文标题

VQ-Flows:矢量量化局部归一化流量

VQ-Flows: Vector Quantized Local Normalizing Flows

论文作者

Sidheekh, Sahil, Dock, Chris B., Jain, Tushar, Balan, Radu, Singh, Maneesh K.

论文摘要

归一化的流提供了一种优雅的生成建模方法,可有效地采样和确切的数据分布的密度评估。但是,当在低维歧管上支持数据分布或具有非平凡拓扑的数据时,当前技术的表现性有显着限制。我们介绍了一个新型的统计框架,用于学习局部归一化流的混合物作为数据歧管上的“图表图”。我们的框架增强了最近方法的表现力,同时保留了归一化流的签名特性,即他们承认精确的密度评估。我们通过量化自动编码器(VQ-AE)学习了数据歧管图表的合适地图集,并使用条件流量学习了它们的分布。我们通过实验验证我们的概率框架可以使现有方法更好地模拟数据分布,而不是复杂的歧管。

Normalizing flows provide an elegant approach to generative modeling that allows for efficient sampling and exact density evaluation of unknown data distributions. However, current techniques have significant limitations in their expressivity when the data distribution is supported on a low-dimensional manifold or has a non-trivial topology. We introduce a novel statistical framework for learning a mixture of local normalizing flows as "chart maps" over the data manifold. Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation. We learn a suitable atlas of charts for the data manifold via a vector quantized auto-encoder (VQ-AE) and the distributions over them using a conditional flow. We validate experimentally that our probabilistic framework enables existing approaches to better model data distributions over complex manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源