论文标题
ProgenkiveMotionseg:基于事件的运动分段的相互加固框架
ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based Motion Segmentation
论文作者
论文摘要
动态视觉传感器(DVS)可能会异步输出反映具有微秒分辨率的物体明显运动的事件,并在监视和其他字段中显示出巨大的应用潜力。但是,现有DVS的输出事件流不可避免地包含背景活动噪声(BA噪声),这是由于暗电流和连接泄漏电流引起的,这将影响对象的时间相关,从而导致运动估计的恶化。特别是,由于没有空间相关性,因此无法直接应用基于滤波器的去涂方法来抑制事件流中的噪声。为了解决这个问题,本文提出了一个新颖的渐进框架,其中运动估计(ME)模块和事件DeNoising(ED)模块以相互加强的方式共同优化。具体而言,基于最大清晰度标准,ME模块通过在运动补偿纱场中的自适应聚类将输入事件分为几个段,并根据群集运动参数捕获事件流的时间相关性。 ED模块以时间相关为指导,计算每个事件属于真实活动事件的信心,并将其传输到我模块以更新运动分割的能量函数以抑制噪声。这两个步骤进行迭代更新,直到获得稳定的运动分割结果为止。对合成数据集和实际数据集的广泛实验结果证明了我们提出的方法与最新方法(SOTA)方法的优越性。
Dynamic Vision Sensor (DVS) can asynchronously output the events reflecting apparent motion of objects with microsecond resolution, and shows great application potential in monitoring and other fields. However, the output event stream of existing DVS inevitably contains background activity noise (BA noise) due to dark current and junction leakage current, which will affect the temporal correlation of objects, resulting in deteriorated motion estimation performance. Particularly, the existing filter-based denoising methods cannot be directly applied to suppress the noise in event stream, since there is no spatial correlation. To address this issue, this paper presents a novel progressive framework, in which a Motion Estimation (ME) module and an Event Denoising (ED) module are jointly optimized in a mutually reinforced manner. Specifically, based on the maximum sharpness criterion, ME module divides the input event into several segments by adaptive clustering in a motion compensating warp field, and captures the temporal correlation of event stream according to the clustered motion parameters. Taking temporal correlation as guidance, ED module calculates the confidence that each event belongs to real activity events, and transmits it to ME module to update energy function of motion segmentation for noise suppression. The two steps are iteratively updated until stable motion segmentation results are obtained. Extensive experimental results on both synthetic and real datasets demonstrate the superiority of our proposed approaches against the State-Of-The-Art (SOTA) methods.