论文标题
一系列相互代数整数的代数程度
Algebraic degree of series of reciprocal algebraic integers
论文作者
论文摘要
在本文中,我给出了$ \ mathbb {q} $中的任何线性组合的足够条件美元$ b_ {i,n} $是不太大的正整数。
In this paper, I give sufficient conditions for any linear combination in $\mathbb{Q}$ of numbers $\sum_{n=1}^{\infty}\frac{b_{1,n}}{α_{1,n}}$, $\ldots$, $\sum_{n=1}^{\infty}\frac{b_{K,n}}{α_{K,n}}$ to have algebraic degree greater than an arbitrary fixed integer $D$ when the numbers $α_{i,n}$ are algebraic integers of sufficiently rapidly increasing modulus and the $b_{i,n}$ are positive integers that are not too large.