论文标题

Riemannian曲率半径的几何形状

The geometry of Riemannian curvature radii

论文作者

Bellini, Eugenio

论文摘要

在本文中,我们探讨了与曲线的曲率半径相关的几何结构,并在riemannian歧管上$(m,g)$上的值。我们表明了与曲率半径自然相关的亚河畔歧管的存在,并研究了它们的特性。我们构造的主要特征是一对全球矢量字段$ f_1,f_2 $,它编码有关$(m,g)$的几何形状的内在信息。

In this paper we explore the geometric structures associated with curvature radii of curves with values on a Riemannian manifold $(M, g)$. We show the existence of sub-Riemannian manifolds naturally associated with the curvature radii and we investigate their properties. The main character of our construction is a pair of global vector fields $f_1, f_2$, which encodes intrinsic information about the geometry of $(M, g)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源