论文标题

通过封闭的复发连接提高视觉皮层的神经预测性

Improving Neural Predictivity in the Visual Cortex with Gated Recurrent Connections

论文作者

Azeglio, Simone, Poetto, Simone, Aira, Luca Savant, Nurisso, Marco

论文摘要

传统上,视觉模型是以自下而上的方式开发的,通过层次结构组成一系列直接的操作,即卷积和合并,目的是模仿视觉皮层中的简单和复杂的细胞,从而引入了深层卷积神经网络(CNNS)。然而,通过最近的神经元记录技术获得的数据支持,即在腹侧视觉流中进行的计算的性质并未被当前的深CNN模型完全捕获。为了填补腹侧视觉流和深层模型之间的差距,已经设计并组织了几个基准测试,并授予了执行多层(V1,V2,V4,IT)和两个对应物之间进行多层(V1,V2,V4,IT)的方法。在我们的工作中,我们旨在将重点转移到考虑侧面复发连接的架构上,这是腹侧视觉流的无处不在特征,以设计自适应的接受场。通过反复的连接,输入S远程空间依赖性可以以局部的多步骤捕获,并且用封闭的复发CNN(GRCNN)引入,可以通过使用门的使用来调节神经元的接收场的无限膨胀。为了提高我们的方法的鲁棒性和激活的生物保真度,我们采用特定的数据增强技术,该技术与几个评分基准相一致。发现通过启发式法实现某种形式的不变性,对更好的神经预测性有益。

Computational models of vision have traditionally been developed in a bottom-up fashion, by hierarchically composing a series of straightforward operations - i.e. convolution and pooling - with the aim of emulating simple and complex cells in the visual cortex, resulting in the introduction of deep convolutional neural networks (CNNs). Nevertheless, data obtained with recent neuronal recording techniques support that the nature of the computations carried out in the ventral visual stream is not completely captured by current deep CNN models. To fill the gap between the ventral visual stream and deep models, several benchmarks have been designed and organized into the Brain-Score platform, granting a way to perform multi-layer (V1, V2, V4, IT) and behavioral comparisons between the two counterparts. In our work, we aim to shift the focus on architectures that take into account lateral recurrent connections, a ubiquitous feature of the ventral visual stream, to devise adaptive receptive fields. Through recurrent connections, the input s long-range spatial dependencies can be captured in a local multi-step fashion and, as introduced with Gated Recurrent CNNs (GRCNN), the unbounded expansion of the neuron s receptive fields can be modulated through the use of gates. In order to increase the robustness of our approach and the biological fidelity of the activations, we employ specific data augmentation techniques in line with several of the scoring benchmarks. Enforcing some form of invariance, through heuristics, was found to be beneficial for better neural predictivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源