论文标题

精灵:工业物联网的可扩展隐私和可验证的协作学习

SPRITE: A Scalable Privacy-Preserving and Verifiable Collaborative Learning for Industrial IoT

论文作者

Sengupta, Jayasree, Ruj, Sushmita, Bit, Sipra Das

论文摘要

最近,协作学习被广泛应用于工业物联网(IIOT)中生成的敏感数据。它使许多设备能够通过与服务器合作,同时将数据集保留在各自的场所中,从而共同训练全局模型。但是,现有方法受到高间接费用的限制,也可能会遭受恶意服务器返回的伪造的汇总结果。因此,我们提出了一种可扩展的,保护隐私和可验证的协作学习(Sprite)算法,以训练IIOT的线性和逻辑回归模型。我们旨在通过将FOG作为中间件引入资源受限的IIOT设备的负担和对云的信任依赖。 Sprite采用阈值秘密共享来保证对IIT设备辍学的隐私保护和鲁棒性,而可验证的附加同构秘密共享以确保在模型聚合过程中可验证。我们证明了Sprite在一个诚实但有趣的环境中的安全性,在这种情况下,云不值得信赖。我们通过在具有两个真实世界工业数据集的IIT用例上进行了理论间接费用分析和大量测试床实验来验证精灵可扩展和轻量级。对于大规模的工业设置,Sprite的竞争对手的线性和逻辑回归分别提高了65%和55%的绩效,同时将IIOT设备的通信开销降低了90%。

Recently collaborative learning is widely applied to model sensitive data generated in Industrial IoT (IIoT). It enables a large number of devices to collectively train a global model by collaborating with a server while keeping the datasets on their respective premises. However, existing approaches are limited by high overheads and may also suffer from falsified aggregated results returned by a malicious server. Hence, we propose a Scalable, Privacy-preserving and veRIfiable collaboraTive lEarning (SPRITE) algorithm to train linear and logistic regression models for IIoT. We aim to reduce burden from resource-constrained IIoT devices and trust dependence on cloud by introducing fog as a middleware. SPRITE employs threshold secret sharing to guarantee privacy-preservation and robustness to IIoT device dropout whereas verifiable additive homomorphic secret sharing to ensure verifiability during model aggregation. We prove the security of SPRITE in an honest-but-curious setting where the cloud is untrustworthy. We validate SPRITE to be scalable and lightweight through theoretical overhead analysis and extensive testbed experimentation on an IIoT use-case with two real-world industrial datasets. For a large-scale industrial setup, SPRITE records 65% and 55% improved performance over its competitor for linear and logistic regressions respectively while reducing communication overhead for an IIoT device by 90%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源