论文标题

Metamorph:使用变压器学习通用控制器

MetaMorph: Learning Universal Controllers with Transformers

论文作者

Gupta, Agrim, Fan, Linxi, Ganguli, Surya, Fei-Fei, Li

论文摘要

视觉,自然语言和音频等多个领域通过利用变形金刚进行大规模预训练,然后是任务特定的微调,从而见证了巨大的进步。相比之下,在机器人技术中,我们主要训练一个机器人进行单个任务。但是,模块化机器人系统现在允许将通用构建块的灵活组合到任务优化的形态中。但是,鉴于大量可能的机器人形态指数,每个新设计的控制器都是不切实际的。在这项工作中,我们提出了Metamorph,这是一种基于变压器的方法,可以通过模块化机器人设计空间学习通用控制器。 Metamorph基于以下洞察力:机器人形态只是我们可以调节变压器输出的另一种模态。通过广泛的实验,我们证明了对多种机器人形态的大规模预训练会导致具有组合概括能力的策略,包括零射击概括以看不见的机器人形态。我们进一步证明,我们的预培训政策可用于样本有效的转移到全新的机器人形态和任务。

Multiple domains like vision, natural language, and audio are witnessing tremendous progress by leveraging Transformers for large scale pre-training followed by task specific fine tuning. In contrast, in robotics we primarily train a single robot for a single task. However, modular robot systems now allow for the flexible combination of general-purpose building blocks into task optimized morphologies. However, given the exponentially large number of possible robot morphologies, training a controller for each new design is impractical. In this work, we propose MetaMorph, a Transformer based approach to learn a universal controller over a modular robot design space. MetaMorph is based on the insight that robot morphology is just another modality on which we can condition the output of a Transformer. Through extensive experiments we demonstrate that large scale pre-training on a variety of robot morphologies results in policies with combinatorial generalization capabilities, including zero shot generalization to unseen robot morphologies. We further demonstrate that our pre-trained policy can be used for sample-efficient transfer to completely new robot morphologies and tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源