论文标题

CM-GAN:用级联的调制gan和对象感知训练的图像对图像进行。

CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware Training

论文作者

Zheng, Haitian, Lin, Zhe, Lu, Jingwan, Cohen, Scott, Shechtman, Eli, Barnes, Connelly, Zhang, Jianming, Xu, Ning, Amirghodsi, Sohrab, Luo, Jiebo

论文摘要

最近的图像介绍方法取得了长足的进步,但在处理复杂图像中的大孔时,通常很难产生合理的图像结构。这部分是由于缺乏有效的网络结构可以捕获图像的远程依赖性和高级语义。我们提出了级联的调制GAN(CM-GAN),这是一种由编码器组成的新网络设计,该设计具有傅立叶卷积块,从带有孔的输入图像中提取多尺度特征表示,并在每个尺度级别上具有新型级联的全局空间空间调制块。在每个解码器块中,首先应用全局调制以执行粗糙和语义感知的结构合成,然后进行空间调制,以以空间自适应的方式进一步调整特征图。此外,我们设计了一种对象感知培训方案,以防止网络在孔中幻觉,从而满足实际情况下对象删除任务的需求。进行了广泛的实验,以表明我们的方法在定量和定性评估中都显着优于现有方法。请参阅项目页面:\ url {https://github.com/htzheng/cm-gan-inpainting}。

Recent image inpainting methods have made great progress but often struggle to generate plausible image structures when dealing with large holes in complex images. This is partially due to the lack of effective network structures that can capture both the long-range dependency and high-level semantics of an image. We propose cascaded modulation GAN (CM-GAN), a new network design consisting of an encoder with Fourier convolution blocks that extract multi-scale feature representations from the input image with holes and a dual-stream decoder with a novel cascaded global-spatial modulation block at each scale level. In each decoder block, global modulation is first applied to perform coarse and semantic-aware structure synthesis, followed by spatial modulation to further adjust the feature map in a spatially adaptive fashion. In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios. Extensive experiments are conducted to show that our method significantly outperforms existing methods in both quantitative and qualitative evaluation. Please refer to the project page: \url{https://github.com/htzheng/CM-GAN-Inpainting}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源