论文标题
在可数随机2玩家游戏中可及性的策略复杂性
Strategy Complexity of Reachability in Countable Stochastic 2-Player Games
论文作者
论文摘要
我们研究具有可达目标的无限随机2玩游戏。我们的结果提供了$ \ varepsilon $ - 最佳(最佳)策略的记忆要求的完整图片。这些结果取决于玩家的动作集的大小以及是否需要统一的策略(即独立于开始状态)。 我们的主要结果是$ \ varepsilon $ -optimal(最佳)最大化器策略需要无限的记忆,如果允许最小化的动作集。即使在非常强大的限制下,这种下限也容纳。即使在无限分支转弯的特殊情况下,即使所有州都允许几乎可以赢得最大化策略,但使用步进计数器加上有限的私人记忆的策略仍然没有用。 关于统一性,我们表明,对于最大化器,即使在有限的动作集或有限分支机构的转弯游戏中,即使在特殊情况下,也不需要均匀的位置(即无内存)均匀的位置(即无内存)。另一方面,在具有有限动作集的游戏中,总是存在均匀的$ \ varepsilon $ - 最佳最大化策略,只使用了一点点的公共记忆。
We study countably infinite stochastic 2-player games with reachability objectives. Our results provide a complete picture of the memory requirements of $\varepsilon$-optimal (resp. optimal) strategies. These results depend on the size of the players' action sets and on whether one requires strategies that are uniform (i.e., independent of the start state). Our main result is that $\varepsilon$-optimal (resp. optimal) Maximizer strategies require infinite memory if Minimizer is allowed infinite action sets. This lower bound holds even under very strong restrictions. Even in the special case of infinitely branching turn-based reachability games, even if all states allow an almost surely winning Maximizer strategy, strategies with a step counter plus finite private memory are still useless. Regarding uniformity, we show that for Maximizer there need not exist positional (i.e., memoryless) uniformly $\varepsilon$-optimal strategies even in the special case of finite action sets or in finitely branching turn-based games. On the other hand, in games with finite action sets, there always exists a uniformly $\varepsilon$-optimal Maximizer strategy that uses just one bit of public memory.