论文标题

使用LSTM的音乐发电

Music Generation Using an LSTM

论文作者

Conner, Michael, Gral, Lucas, Adams, Kevin, Hunger, David, Strelow, Reagan, Neuwirth, Alexander

论文摘要

在过去的几年中,序列建模的深度学习变得越来越受欢迎。为了实现这一目标,LSTM网络结构已被证明对于对系列中的下一个输出进行预测非常有用。例如,预测短信的下一个单词的智能手机可以使用LSTM。我们试图使用经常性神经网络(RNN)来展示音乐发电的方法。更具体地说,长期记忆(LSTM)神经网络。由于手工制作或生成,发电是一项众所周知的复杂任务,因为涉及无数的组件。考虑到这一点,我们简要介绍了LSTM在音乐发电中的直觉,理论和应用,开发和展示我们发现的网络,我们发现的网络最能实现这一目标,识别和解决面临的问题和挑战,并包括我们网络的潜在改进。

Over the past several years, deep learning for sequence modeling has grown in popularity. To achieve this goal, LSTM network structures have proven to be very useful for making predictions for the next output in a series. For instance, a smartphone predicting the next word of a text message could use an LSTM. We sought to demonstrate an approach of music generation using Recurrent Neural Networks (RNN). More specifically, a Long Short-Term Memory (LSTM) neural network. Generating music is a notoriously complicated task, whether handmade or generated, as there are a myriad of components involved. Taking this into account, we provide a brief synopsis of the intuition, theory, and application of LSTMs in music generation, develop and present the network we found to best achieve this goal, identify and address issues and challenges faced, and include potential future improvements for our network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源