论文标题

用于改进像素艺术表示的像素VQ-VAE

Pixel VQ-VAEs for Improved Pixel Art Representation

论文作者

Saravanan, Akash, Guzdial, Matthew

论文摘要

机器学习在图像处理方面取得了很大的成功。但是,这项工作的重点很大程度上是在逼真的图像上,忽略了更多的小众艺术风格,例如像素艺术。此外,许多关注像素组的传统机器学习模型与单个像素很重要的像素艺术都无法正常工作。我们提出了一个专门的VQ-VAE模型Pixel VQ-VAE,该模型学习了Pixel Art的表示。我们表明,它在嵌入质量和下游任务上的性能中都优于其他模型。

Machine learning has had a great deal of success in image processing. However, the focus of this work has largely been on realistic images, ignoring more niche art styles such as pixel art. Additionally, many traditional machine learning models that focus on groups of pixels do not work well with pixel art, where individual pixels are important. We propose the Pixel VQ-VAE, a specialized VQ-VAE model that learns representations of pixel art. We show that it outperforms other models in both the quality of embeddings as well as performance on downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源