论文标题

贝叶斯非参数矢量自回归模型通过logit sticking先验:儿童肥胖症的申请

Bayesian Nonparametric Vector Autoregressive Models via a Logit Stick-breaking Prior: an Application to Child Obesity

论文作者

Beraha, Mario, Guglielmi, Alessandra, Quintana, Fernando A., de Iorio, Maria, Eriksson, Johan Gunnar, Yap, Fabian

论文摘要

已知成年人的超重和肥胖与代谢和心血管疾病的风险有关。由于肥胖是一种流行病,对儿童的影响越来越大,因此重要的是要了解这种病是否从早期到童年持续存在,以及是否可以检测到肥胖的不同模式。我们的动机始于对东南亚儿童的肥胖症的研究。我们的主要重点是调整基线信息的效果后,将肥胖模式聚类。具体而言,我们考虑了一个自出生后每6个月采取每6个月采取的高度和体重模式的联合模型。我们提出了一个新型模型,该模型通过将矢量自回旋抽样模型与依赖的logit stick sticking之前的先验相结合来促进聚类。模拟研究表明,与其他替代方案相比,模型对捕获模式的优越性。我们将模型应用于激励数据集,并讨论检测到的群集的主要特征。在预测性能方面,我们还将替代模型与我们的模型进行了比较。

Overweight and obesity in adults are known to be associated with risks of metabolic and cardiovascular diseases. Because obesity is an epidemic, increasingly affecting children, it is important to understand if this condition persists from early life to childhood and if different patterns of obesity growth can be detected. Our motivation starts from a study of obesity over time in children from South Eastern Asia. Our main focus is on clustering obesity patterns after adjusting for the effect of baseline information. Specifically, we consider a joint model for height and weight patterns taken every 6 months from birth. We propose a novel model that facilitates clustering by combining a vector autoregressive sampling model with a dependent logit stick-breaking prior. Simulation studies show the superiority of the model to capture patterns, compared to other alternatives. We apply the model to the motivating dataset, and discuss the main features of the detected clusters. We also compare alternative models with ours in terms of predictive performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源