论文标题
在双重相对论中,将克莱恩 - 戈登和迪拉克方程式的几何形成
Geometrizing the Klein-Gordon and Dirac equations in Doubly Special Relativity
论文作者
论文摘要
在这项工作中,我们讨论了相对论的波动方程,即在双重特殊的相对性场景中的klein-戈登和迪拉克方程。我们采用了我们所谓的几何方法,基于弯曲动量空间的几何形状,应将其视为与较大的代数相互补。在此框架中,我们能够重新闻名众所周知的代数表达式,以及处理尚未解决的问题,机智,两个方程式之间的明确关系,狄拉克粒子的离散对称性,协方差的命运以及对Klein-gordon-Gordon-Gordon-Gordon-Gordon-Gordon-Gordon-Gordon-Gordon-Gords case的正式定义。
In this work we discuss the deformed relativistic wave equations, namely the Klein--Gordon and Dirac equations in a Doubly Special Relativity scenario. We employ what we call a geometric approach, based on the geometry of a curved momentum space, which should be seen as complementary to the more spread algebraic one. In this frame we are able to rederive well-known algebraic expressions, as well as to treat yet unresolved issues, to wit, the explicit relation between both equations, the discrete symmetries for Dirac particles, the fate of covariance, and the formal definition of a Hilbert space for the Klein--Gordon case.