论文标题
从运动和曝光线索中的自我监督的HDR成像
Self-supervised HDR Imaging from Motion and Exposure Cues
论文作者
论文摘要
最近的高动态范围(HDR)技术扩展了当前摄像机的功能,在这些相机中,没有单个低动力范围(LDR)图像无法准确捕获具有广泛照明的场景。这通常是通过捕获具有不同暴露值的几个LDR图像来完成的,然后将其信息合并到合并的HDR图像中。尽管这种方法适合静态场景,但动态场景构成了几个挑战,主要与寻找可靠的像素对应关系的困难有关。数据驱动的方法通过学习配对的LDR-HDR训练数据来学习端到端映射来解决问题,但实际上,为动态场景生成这样的HDR地面真相标签是耗时的,需要复杂的程序,以控制场景的某些动态元素(例如,演员姿势)(例如,姿势)和可重复的照明条件(Quepoble Lighting Recestion(Stobable Lighting Recestion)。在这项工作中,我们提出了一种新颖的自我监督方法,用于可学习的HDR估计,以减轻对HDR地面真实标签的需求。我们建议利用LDR图像的内部统计数据创建HDR伪标签。我们分别利用输入图像的静态且暴露良好的部分,这些部分与合成照明剪辑和运动增强相结合提供了高质量的训练示例。实验结果表明,使用我们提出的自我实施方法训练的HDR模型与在全面监督下受过培训的人实现绩效,并且在很大程度上优于以前不需要任何监督的方法。
Recent High Dynamic Range (HDR) techniques extend the capabilities of current cameras where scenes with a wide range of illumination can not be accurately captured with a single low-dynamic-range (LDR) image. This is generally accomplished by capturing several LDR images with varying exposure values whose information is then incorporated into a merged HDR image. While such approaches work well for static scenes, dynamic scenes pose several challenges, mostly related to the difficulty of finding reliable pixel correspondences. Data-driven approaches tackle the problem by learning an end-to-end mapping with paired LDR-HDR training data, but in practice generating such HDR ground-truth labels for dynamic scenes is time-consuming and requires complex procedures that assume control of certain dynamic elements of the scene (e.g. actor pose) and repeatable lighting conditions (stop-motion capturing). In this work, we propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels. We propose to leverage the internal statistics of LDR images to create HDR pseudo-labels. We separately exploit static and well-exposed parts of the input images, which in conjunction with synthetic illumination clipping and motion augmentation provide high quality training examples. Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision, and are to a large extent superior to previous methods that equally do not require any supervision.