论文标题
自propelled颗粒的流行过程:基于连续和基因建模
Epidemic processes on self-propelled particles: continuum and agent-based modelling
论文作者
论文摘要
大多数传播过程都需要代理之间的空间邻近。因此,移动药物种群中扩散动态的固定状态取决于流行过程中涉及的时间和长度尺度之间的相互作用及其在太空中的运动。我们在一个简单的模型中分析了这种相互作用所产生的稳定特性,该模型描述了自propelled颗粒(执行跑步和滚动运动)上的流行病扩散(建模为易感感染感受的过程)。将我们的注意力集中在扩散的长期制度上,我们发现药物的运动在质上改变了流行性转变的性质,其特征是受感染剂的宏观分数出现。确实,在一个,两个维度和三个维度中扩散的试剂的过渡变成了平均场类型,而在没有运动的情况下,流行病爆发取决于由固定位置确定的基础静态网络的维度。从系统的连续描述获得的见解通过基于代理的模型的数值模拟验证。我们的工作旨在弥合软活动物理学和理论流行病学,并可能对两个社区的研究人员感兴趣。
Most spreading processes require spatial proximity between agents. The stationary state of spreading dynamics in a population of mobile agents thus depends on the interplay between the time and length scales involved in the epidemic process and their motion in space. We analyze the steady properties resulting from such interplay in a simple model describing epidemic spreading (modeled as a Susceptible-Infected-Susceptible process) on self-propelled particles (performing Run-and-Tumble motion). Focusing our attention on the diffusive long-time regime, we find that the agents' motion changes qualitatively the nature of the epidemic transition characterized by the emergence of a macroscopic fraction of infected agents. Indeed, the transition becomes of the mean-field type for agents diffusing in one, two and three dimensions, while, in the absence of motion, the epidemic outbreak depends on the dimension of the underlying static network determined by the agents' fixed locations. The insights obtained from a continuum description of the system are validated by numerical simulations of an agent-based model. Our work aims at bridging soft active matter physics and theoretical epidemiology, and may be of interest for researchers in both communities.