论文标题
MT-UDA:朝着有限的源标签迈向无监督的跨模式医学图像分割
MT-UDA: Towards Unsupervised Cross-modality Medical Image Segmentation with Limited Source Labels
论文作者
论文摘要
深度卷积神经网络(DCNN)的成功受益于大量注释数据。但是,注释医学图像是费力的,昂贵的,需要人类的专业知识,这引起了标签稀缺问题。特别是在遇到域转移时,问题变得更加严重。尽管深度无监督的域适应性(UDA)可以利用良好的源域注释和丰富的目标域数据来促进跨模式图像分割,并减轻目标域上的标签差异问题,但常规UDA方法在源域域名域而遭受严重的性能降解时,源域域名降解。在本文中,我们探讨了充满挑战的UDA设置 - 有限的源域注释。我们旨在调查如何有效利用来自源和目标域的未标记数据,具有有限的跨模式图像分割的源注释。为了实现这一目标,我们提出了一个新的标签有效的UDA框架,称为MT-UDA,在该框架中,通过有限的源标签培训的学生模型分别通过两个教师模型以半监督的方式从两个领域的未标记数据中学习。更具体地说,学生模型不仅通过鼓励预测一致性来提炼内域语义知识,而且还通过执行结构一致性来利用域间的解剖信息。因此,学生模型可以有效地集成了可用数据资源下面的基本知识,以减轻源标签稀缺性的影响并产生改善的跨模式细分性能。我们在MM-WHS 2017数据集上评估了我们的方法,并证明我们的方法在源标签稀缺情况下的优于最先进的方法。
The success of deep convolutional neural networks (DCNNs) benefits from high volumes of annotated data. However, annotating medical images is laborious, expensive, and requires human expertise, which induces the label scarcity problem. Especially when encountering the domain shift, the problem becomes more serious. Although deep unsupervised domain adaptation (UDA) can leverage well-established source domain annotations and abundant target domain data to facilitate cross-modality image segmentation and also mitigate the label paucity problem on the target domain, the conventional UDA methods suffer from severe performance degradation when source domain annotations are scarce. In this paper, we explore a challenging UDA setting - limited source domain annotations. We aim to investigate how to efficiently leverage unlabeled data from the source and target domains with limited source annotations for cross-modality image segmentation. To achieve this, we propose a new label-efficient UDA framework, termed MT-UDA, in which the student model trained with limited source labels learns from unlabeled data of both domains by two teacher models respectively in a semi-supervised manner. More specifically, the student model not only distills the intra-domain semantic knowledge by encouraging prediction consistency but also exploits the inter-domain anatomical information by enforcing structural consistency. Consequently, the student model can effectively integrate the underlying knowledge beneath available data resources to mitigate the impact of source label scarcity and yield improved cross-modality segmentation performance. We evaluate our method on MM-WHS 2017 dataset and demonstrate that our approach outperforms the state-of-the-art methods by a large margin under the source-label scarcity scenario.