论文标题

3D中磁镀金弹性流体的适合度

Well-posedness for magnetoviscoelastic fluids in 3D

论文作者

Du, Hengrong, Shao, Yuanzhen, Simonett, Gieri

论文摘要

我们表明,描述三维中磁性弹性流体的方程式可以作为准线性抛物线系统施放。使用最大$ l_p $ - 规范性的理论,我们确定了局部强解决方案的存在和独特性,并且我们表明每个解决方案在时空和时间上都是平滑的(实际上是分析)。此外,我们给出了一组均衡的完整表征,并表明从全球存在接近恒定平衡的溶液并收敛到(可能不同的)恒定平衡。最后,我们表明,最终在状态空间的拓扑中的每个解决方案都存在于全球,并融合到平衡集合中。

We show that the system of equations describing a magnetoviscoelastic fluid in three dimensions can be cast as a quasilinear parabolic system. Using the theory of maximal $L_p$-regularity, we establish existence and uniqueness of local strong solutions and we show that each solution is smooth (in fact analytic) in space and time. Moreover, we give a complete characterization of the set of equilibria and show that solutions that start out close to a constant equilibrium exist globally and converge to a (possibly different) constant equilibrium. Finally, we show that every solution that is eventually bounded in the topology of the state space exists globally and converges to the set of equilibria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源