论文标题
作者在研究网络领域中的多学科和纪律角色
Author Multidisciplinarity and Disciplinary Roles in Field of Study Networks
论文作者
论文摘要
在研究大型研究语料库时,“遥远的阅读”方法对于了解相应的研究领域的主题和趋势至关重要。特别是,鉴于多学科研究的公认好处,映射各种研究主题的学校或社区可能很重要,并了解主题在这些社区内部和这些社区之间扮演的多学科角色。这项工作提出了研究领域(FOS)网络作为一种新型网络表示,以用于科学计量分析。我们描述了FOS网络的形成,该网络根据在其中发表的作者的研究主题,从文章中,可以确定研究领域。当通过探索多学科科学的角度进行分析时,FOS网络对于远处读取大量研究论文的数据集特别有用。在不断发展的科学景观中,与传统的规定纪律分类方案相比,FOS网络中的模块化社区为研究主题和子学科提供了替代的分类策略。此外,FOS网络的结构性作用分析可以突出此类社区中主题的重要特征。为了支持这一点,我们提出了两个案例研究,探讨了不同规模和范围的多学科研究;也就是说,与网络科学研究有关的6,323篇文章和4,184,011条与Covid-19-Pandemic研究有关的文章。
When studying large research corpora, "distant reading" methods are vital to understand the topics and trends in the corresponding research space. In particular, given the recognised benefits of multidisciplinary research, it may be important to map schools or communities of diverse research topics, and to understand the multidisciplinary role that topics play within and between these communities. This work proposes Field of Study (FoS) networks as a novel network representation for use in scientometric analysis. We describe the formation of FoS networks, which relate research topics according to the authors who publish in them, from corpora of articles in which fields of study can be identified. FoS networks are particularly useful for the distant reading of large datasets of research papers when analysed through the lens of exploring multidisciplinary science. In an evolving scientific landscape, modular communities in FoS networks offer an alternative categorisation strategy for research topics and sub-disciplines, when compared to traditional prescribed discipline classification schemes. Furthermore, structural role analysis of FoS networks can highlight important characteristics of topics in such communities. To support this, we present two case studies which explore multidisciplinary research in corpora of varying size and scope; namely, 6,323 articles relating to network science research and 4,184,011 articles relating to research on the COVID-19-pandemic.