论文标题

具有瞬态数据的物联网网络的深入强化学习基于学习的缓存策略

A Deep Reinforcement Learning-Based Caching Strategy for IoT Networks with Transient Data

论文作者

Wu, Hongda, Nasehzadeh, Ali, Wang, Ping

论文摘要

在过去的几年中,物联网(物联网)一直在不断上升,现在它的潜力更加明显。但是,瞬态数据生成和有限的能源资源是这些网络的主要瓶颈。此外,最小延迟和其他常规的服务质量测量仍然是满足的有效要求。有效的缓存策略可以帮助满足标准的服务要求,同时绕过IoT网络的特定限制。采用深度强化学习(DRL)算法使我们能够制定有效的缓存计划,而无需任何先验知识或上下文信息。在这项工作中,我们提出了一种基于DRL的缓存方案,以提高缓存命中率并减少物联网网络的能源消耗,同时考虑到数据新鲜度和IOT数据的有限寿命。为了更好地捕获区域不同的受欢迎度分布,我们提出了一个分层体系结构,以在IoT网络中部署边缘缓存节点。综合实验的结果表明,我们所提出的方法的表现优于众所周知的常规缓存策略和现有的基于DRL的解决方案,从可缓存的命中率和物联网网络的能源消耗来获得相当大的余量。

The Internet of Things (IoT) has been continuously rising in the past few years, and its potentials are now more apparent. However, transient data generation and limited energy resources are the major bottlenecks of these networks. Besides, minimum delay and other conventional quality of service measurements are still valid requirements to meet. An efficient caching policy can help meet the standard quality of service requirements while bypassing IoT networks' specific limitations. Adopting deep reinforcement learning (DRL) algorithms enables us to develop an effective caching scheme without the need for any prior knowledge or contextual information. In this work, we propose a DRL-based caching scheme that improves the cache hit rate and reduces energy consumption of the IoT networks, in the meanwhile, taking data freshness and limited lifetime of IoT data into account. To better capture the regional-different popularity distribution, we propose a hierarchical architecture to deploy edge caching nodes in IoT networks. The results of comprehensive experiments show that our proposed method outperforms the well-known conventional caching policies and an existing DRL-based solution in terms of cache hit rate and energy consumption of the IoT networks by considerable margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源