论文标题

使用间接信息的线性假设测试

Tests of Linear Hypotheses using Indirect Information

论文作者

McCormack, Andrew, Hoff, Peter

论文摘要

在具有小组内样本量的多群数据设置中,特定于组的线性假设的标准$ f $检验可能具有低功率,尤其是如果相对于解释变量的数量,组内样本量不大。为了解决这种情况,在本文中,我们根据各组的信息共享得出替代测试统计信息。每个小组特异性测试的功率可能都比标准$ f $检验大得多,同时,如果该组的假设为真,则仍然完全保持目标I型错误率。针对给定组的拟议测试使用的统计量在从其他组的数据中得出的先验分布下具有最佳的边缘功率。随着先前的分布变得更加分散,该统计数据将使用通常的$ f $统计统计,但是随着先前的分布变得极为集中,限制了“锥体”测试统计量。我们将圆锥测试的功率和$ p $值与$ f $检验的功率和$ f $检验进行了比较。提供了对教育结果数据的分析,从经验上证明,所提出的测试比$ f $检验更强大。

In multigroup data settings with small within-group sample sizes, standard $F$-tests of group-specific linear hypotheses can have low power, particularly if the within-group sample sizes are not large relative to the number of explanatory variables. To remedy this situation, in this article we derive alternative test statistics based on information-sharing across groups. Each group-specific test has potentially much larger power than the standard $F$-test, while still exactly maintaining a target type I error rate if the hypothesis for the group is true. The proposed test for a given group uses a statistic that has optimal marginal power under a prior distribution derived from the data of the other groups. This statistic approaches the usual $F$-statistic as the prior distribution becomes more diffuse, but approaches a limiting "cone" test statistic as the prior distribution becomes extremely concentrated. We compare the power and $p$-values of the cone test to that of the $F$-test in some high-dimensional asymptotic scenarios. An analysis of educational outcome data is provided, demonstrating empirically that the proposed test is more powerful than the $F$-test.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源