论文标题
矩阵蓬松金原理在稀疏性约束下最大化可控性指标的方法
Matrix Pontryagin principle approach to controllability metrics maximization under sparsity constraints
论文作者
论文摘要
稀疏性约束下的可控性最大化问题是节点选择问题,它选择有效控制的输入,以最大程度地减少控制所需状态的能量。在本文中,我们讨论了稀疏性约束的可控性指标最大化问题及其凸松弛的等效性。该证明是基于用于可控性Lyapunov微分方程的基质值的最大原理。
Controllability maximization problem under sparsity constraints is a node selection problem that selects inputs that are effective for control in order to minimize the energy to control for desired state. In this paper we discuss the equivalence between the sparsity constrained controllability metrics maximization problems and their convex relaxation. The proof is based on the matrix-valued Pontryagin maximum principle applied to the controllability Lyapunov differential equation.