论文标题

rnnpose:复发6-DOF对象姿势改进,具有鲁棒的对应场估计和姿势优化

RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization

论文作者

Xu, Yan, Lin, Kwan-Yee, Zhang, Guofeng, Wang, Xiaogang, Li, Hongsheng

论文摘要

从单眼图像中估计的6-DOF对象姿势构成具有挑战性,并且通常需要进行高精度估算后进行后进行程序。在本文中,我们提出了一个基于重复的神经网络(RNN)进行对象姿势细化的框架,这对于错误的初始姿势和闭塞是可靠的。在复发期间,基于估计的对应场(在渲染的图像和观察到的图像之间),对象姿势细化被作为非线性最小二乘问题提出。然后,通过可区分的Levenberg-Marquardt(LM)算法来解决该问题,从而实现端到端培训。在每次迭代中,都会进行对应场估计和姿势细化,以恢复对象姿势。此外,为了提高遮挡的鲁棒性,我们基于3D模型的学习描述符和观察到的2D图像引入了一致性检查机制,这在姿势优化过程中会使不可靠的对应关系下降。对linemod,coclusion-linemod和YCB-Video数据集进行了广泛的实验,验证了我们方法的有效性,并证明了最新的性能。

6-DoF object pose estimation from a monocular image is challenging, and a post-refinement procedure is generally needed for high-precision estimation. In this paper, we propose a framework based on a recurrent neural network (RNN) for object pose refinement, which is robust to erroneous initial poses and occlusions. During the recurrent iterations, object pose refinement is formulated as a non-linear least squares problem based on the estimated correspondence field (between a rendered image and the observed image). The problem is then solved by a differentiable Levenberg-Marquardt (LM) algorithm enabling end-to-end training. The correspondence field estimation and pose refinement are conducted alternatively in each iteration to recover the object poses. Furthermore, to improve the robustness to occlusion, we introduce a consistency-check mechanism based on the learned descriptors of the 3D model and observed 2D images, which downweights the unreliable correspondences during pose optimization. Extensive experiments on LINEMOD, Occlusion-LINEMOD, and YCB-Video datasets validate the effectiveness of our method and demonstrate state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源