论文标题

双重性诱导的语义匹配知识图形嵌入的正规器

Duality-Induced Regularizer for Semantic Matching Knowledge Graph Embeddings

论文作者

Wang, Jie, Zhang, Zhanqiu, Shi, Zhihao, Cai, Jianyu, Ji, Shuiwang, Wu, Feng

论文摘要

语义匹配模型(假设具有相似语义的实体具有相似的嵌入方式)在知识图嵌入(KGE)中显示出很大的功能。许多现有的语义匹配模型在嵌入空间中使用内部产品来测量静态和时间知识图中三元组和四倍体的合理性。但是,具有相同内部产品与另一个矢量的矢量仍然可以彼此正交,这意味着具有相似语义的实体可能具有不同的嵌入。内部产品的这种属性显着限制了语义匹配模型的性能。为了应对这一挑战,我们提出了一种新颖的正规化程序 - 即双重性引起的正规器(Dura) - 有效地鼓励具有类似语义的实体具有相似的嵌入。硬脑膜的主要新颖性是基于这样的观察结果,即对于现有的语义匹配KGE模型(原始),通常存在与之紧密相关的另一个基于距离的KGE模型(双重),可以用作实体嵌入的有效约束。实验表明,硬脑膜始终如一地显着提高了静态和时间知识图基准上最先进的语义匹配模型的性能。

Semantic matching models -- which assume that entities with similar semantics have similar embeddings -- have shown great power in knowledge graph embeddings (KGE). Many existing semantic matching models use inner products in embedding spaces to measure the plausibility of triples and quadruples in static and temporal knowledge graphs. However, vectors that have the same inner products with another vector can still be orthogonal to each other, which implies that entities with similar semantics may have dissimilar embeddings. This property of inner products significantly limits the performance of semantic matching models. To address this challenge, we propose a novel regularizer -- namely, DUality-induced RegulArizer (DURA) -- which effectively encourages the entities with similar semantics to have similar embeddings. The major novelty of DURA is based on the observation that, for an existing semantic matching KGE model (primal), there is often another distance based KGE model (dual) closely associated with it, which can be used as effective constraints for entity embeddings. Experiments demonstrate that DURA consistently and significantly improves the performance of state-of-the-art semantic matching models on both static and temporal knowledge graph benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源