论文标题

X射线解剖改善了肺结节检测

X-ray Dissectography Improves Lung Nodule Detection

论文作者

Niu, Chuang, Dasegowda, Giridhar, Yan, Pingkun, Kalra, Mannudeep K., Wang, Ge

论文摘要

尽管X光片是由于其成本效益和广泛的可访问性而在全球范围内最常使用的,但X射线路径沿线的结构叠加通常会使难以检测到的肺结节可疑或有关肺结节。在这项研究中,我们应用“ X射线解剖”以数字化肺部从几个射线照相投影中解剖,抑制无关结构的干扰并改善肺结核的可检测性。为此,一个协作检测网络旨在将肺结节定位在2D解剖预测和3D物理空间中。我们的实验结果表明,与使用流行的检测网络从原始投影中检测到的肺结节相比,我们的方法可以显着提高平均精度20+%。潜在地,这种方法可以帮助重新设计当前的X射线成像协议和工作流程,并改善肺部疾病中胸部X光片的诊断性能。

Although radiographs are the most frequently used worldwide due to their cost-effectiveness and widespread accessibility, the structural superposition along the x-ray paths often renders suspicious or concerning lung nodules difficult to detect. In this study, we apply "X-ray dissectography" to dissect lungs digitally from a few radiographic projections, suppress the interference of irrelevant structures, and improve lung nodule detectability. For this purpose, a collaborative detection network is designed to localize lung nodules in 2D dissected projections and 3D physical space. Our experimental results show that our approach can significantly improve the average precision by 20+% in comparison with the common baseline that detects lung nodules from original projections using a popular detection network. Potentially, this approach could help re-design the current X-ray imaging protocols and workflows and improve the diagnostic performance of chest radiographs in lung diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源