论文标题
Carroll协变量标量二维
Carroll covariant scalar fields in two dimensions
论文作者
论文摘要
共形的Carroll对称性通常是在无效的歧管上产生的,对于渐近平坦的空间,通用黑洞的地平线和无张力的串的全息图很重要。在本文中,我们专注于二维(2D)无效的歧管,因此关注2D共形Carroll或等效的3D Bondi-Metzner-Sachs(BMS)代数。使用Carroll协方差,我们写了最一般的无质量Carroll Carroll标量场理论,并发现了三个不等的动作。其中有两个。像时间般的空间动作,以前曾在文学中露面。我们发现了我们称之为混合衍生理论的三分之一。正如预期的那样,这三种理论都享有非壳BMS不变性。有趣的是,我们发现混合衍生物理论的壳对称性是单个Virasoro代数而不是完整的BMS。我们讨论了无张力弦和平坦全息图的潜在应用。
Conformal Carroll symmetry generically arises on null manifolds and is important for holography of asymptotically flat spacetimes, generic black hole horizons and tensionless strings. In this paper, we focus on two dimensional (2d) null manifolds and hence on the 2d Conformal Carroll or equivalently the 3d Bondi-Metzner-Sachs (BMS) algebra. Using Carroll covariance, we write the most general free massless Carroll scalar field theory and discover three inequivalent actions. Of these, two viz. the time-like and space-like actions, have made their appearance in literature before. We uncover a third that we call the mixed-derivative theory. As expected, all three theories enjoy off-shell BMS invariance. Interestingly, we find that the on-shell symmetry of mixed derivative theory is a single Virasoro algebra instead of the full BMS. We discuss potential applications to tensionless strings and flat holography.