论文标题
k $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $ photovoltaic应用程序的材料的初始研究
Ab Initio Study of K${_3}$Cu${_3}$P${_2}$ Material for Photovoltaic Applications
论文作者
论文摘要
搜索在光电学和光伏领域中应用的有效材料是全球研究领域。诸如k $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $之类的化合物的潜力尚未完全实现。因此,我们基于密度功能理论进行了AB启动研究,以研究K $ {_ 3} $ CU $ {_ 3} $ P $ {_ 2} $的k $ {_ 3} $ cu $ {_ 3} $ cu $ {_ 3}的结构,电子,弹性和光学特性。在三种不同的情况下计算基态性能,即:具有自旋轨道耦合(SOC),无自旋轨道耦合以及Hubbard U参数。对于K $ {_ 3} $ cu $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $,获得了1.338 eV,1.323 eV和1.673 eV的直接电子带盖$,没有soc,k $ {_ 3} $ {_ 3} $ cu $ {_ 3} $ cu $ {_ 3} k $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $分别使用Hubbard U。在所有情况下,Cu-D轨道在价带的顶部都占主导地位。 SOC对k $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $计算的晶格常数和bandgap微不足道的效果。机械稳定性测试表明k $ {_ 3} $ cu $ {_ 3} $ p $ {_ 2} $在零压力下是机械稳定的。考虑到哈伯德U时,发现光带隙会增加0.635 eV。通常,将Hubbard U参数纳入密度功能理论可改善带隙和光学特性的预测。
Search for efficient materials for application in the fields of optoelectronics and photovoltaics are active areas of research across the world. The potential of compounds such as K${_3}$Cu${_3}$P${_2}$ is not yet fully realized. Therefore, we perform the ab initio studies based on density functional theory to investigate the structural, electronic, elastic, and optical properties of K${_3}$Cu${_3}$P${_2}$. Ground state properties were computed in three different scenarios, i.e: with spin-orbit coupling (SOC), without spin-orbit coupling, and with Hubbard U parameter. Direct electronic bandgaps of 1.338 eV, 1.323 eV and 1.673 eV were obtained for K${_3}$Cu${_3}$P${_2}$ without SOC, K${_3}$Cu${_3}$P${_2}$ with SOC and K${_3}$Cu${_3}$P${_2}$ with Hubbard U respectively. In all the cases, Cu-d orbitals were dominant at the top of the valence band. The effect of SOC on the K${_3}$Cu${_3}$P${_2}$ computed lattice constant and bandgap was insignificant. The mechanical stability test indicated that K${_3}$Cu${_3}$P${_2}$ is mechanically stable at zero pressure. The optical band gap was found to increase by 0.635 eV when Hubbard U was taken into consideration. Generally, the inclusion of the Hubbard U parameter in density functional theory improves the predictions of the bandgap and optical properties.