论文标题

通过利用条件独立性来优化数据收集和研究透明度的结构预定

Prespecification of Structure for Optimizing Data Collection and Research Transparency by Leveraging Conditional Independencies

论文作者

Vowels, Matthew J.

论文摘要

数据收集和研究方法是研究管道的关键部分。一方面,重要的是,我们必须以最大化我们所测量的有效性的方式收集数据,这可能涉及与许多项目一起使用长音阶。另一方面,在多个尺度上收集大量项目会导致参与者的疲劳以及昂贵且耗时的数据收集。因此,重要的是我们最佳地使用可用资源。在这项工作中,我们考虑对理论的考虑以及相关的因果/结构模型如何通过不浪费时间收集数据来帮助我们简化数据收集程序,而该变量对于随后分析而言并不重要。这不仅节省了时间,并使我们能够重定向资源参与其他更重要的变量,而且还提高了研究透明度和理论测试的可靠性。为了实现这一简化的数据收集,我们利用结构模型,马尔可夫有条件的独立性结构隐含在这些模型中,以识别对于回答特定研究问题至关重要的子结构。在这项工作中,我们回顾了相关的概念,并提供了许多教学示例,希望心理学家可以使用这些技术简化其数据收集过程而不会使后续分析无效。我们提供了许多模拟结果,以证明这种精简的分析影响有限。

Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源