论文标题

阴影,拓扑熵和诱发的摩尔斯男友差异性的复发

Shadowing, topological entropy and recurrence of induced Morse-Smale diffeomorphisms

论文作者

Arbieto, Alexander, Bohorquez, Jennyffer

论文摘要

令$ f:m \ rightarrow m $为在没有边界的紧凑型和连接的歧管上定义的摩尔斯 - 摩尔分型差异性。令$ c(m)$表示赋予Hausdorff公制的M的所有Subcontinua的超空间和$ c(f):c(m)\ rightarrow c(m)$表示$ f $的同态同态。我们在本文中表明,如果$ m $是单位圆$ s^1 $,那么诱导的地图$ c(f)$就没有阴影属性。我们还表明,$ c(f)$的拓扑熵只有两个可能的值:$ 0 $或$ \ infty $。特别是,我们表明$ c(f)$的熵是$ 0 $当$ m $是单位圆$ s^1 $时,如果歧管$ m $的尺寸大于两个,则是$ \ infty $。此外,我们研究了诱导的地图$ 2^f $和$ c(f)$的复发,以及足够的条件,以获得超空间中无限拓扑熵。

Let $f : M \rightarrow M$ be a Morse-Smale diffeomorphism defined on a compact and connected manifold without boundary. Let $C(M)$ denote the hyperspace of all subcontinua of M endowed with the Hausdorff metric and $C(f) : C(M) \rightarrow C(M)$ denote the induced homeomorphism of $f$. We show in this paper that if $M$ is the unit circle $S^1$ then the induced map $C(f)$ has not the shadowing property. Also we show that the topological entropy of $C(f)$ has only two possible values: $0$ or $\infty$. In particular, we show that the entropy of $C(f)$ is $0$ when $M$ is the unit circle $S^1$ and it is $\infty$ if the dimension of the manifold $M$ is greater than two. Furthermore, we study the recurrence of the induced maps $2^f$ and $C(f)$ and sufficient conditions to obtain infinite topological entropy in the hyperspace.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源