论文标题

自动化算法选择:从基于功能到功能的方法

Automated Algorithm Selection: from Feature-Based to Feature-Free Approaches

论文作者

Alissa, Mohamad, Sim, Kevin, Hart, Emma

论文摘要

我们提出了一种用于算法选择的新技术,适用于优化域中,其中包含数据中的隐式顺序信息,例如在线bin包装中。具体而言,我们训练两种经常性的神经网络,以预测在线包装中的包装启发式,从四种著名的启发式方法中选择。作为输入,RNN方法仅使用项目尺寸的序列。这与算法选择的典型方法形成鲜明对比,该方法需要使用特定于域的实例特征对模型进行训练,这些实例特征首先需要从输入数据中得出。根据数据集的不同,RNN方法可在80.88%至97.63%之间达到80.88%至97.63%的甲骨文绩效的5%以内。它们还显示出优于使用派生功能训练的经典机器学习模型。最后,我们假设当实例表现出某种隐式结构时,提出的方法会表现良好,从而导致相对于一组启发式方法歧视性能。我们通过生成具有增加结构级别的14个新数据集来检验这一假设,并表明在算法选择可带来益处之前,需要存在关键的结构阈值。

We propose a novel technique for algorithm-selection, applicable to optimisation domains in which there is implicit sequential information encapsulated in the data, e.g., in online bin-packing. Specifically we train two types of recurrent neural networks to predict a packing heuristic in online bin-packing, selecting from four well-known heuristics. As input, the RNN methods only use the sequence of item-sizes. This contrasts to typical approaches to algorithm-selection which require a model to be trained using domain-specific instance features that need to be first derived from the input data. The RNN approaches are shown to be capable of achieving within 5% of the oracle performance on between 80.88% to 97.63% of the instances, depending on the dataset. They are also shown to outperform classical machine learning models trained using derived features. Finally, we hypothesise that the proposed methods perform well when the instances exhibit some implicit structure that results in discriminatory performance with respect to a set of heuristics. We test this hypothesis by generating fourteen new datasets with increasing levels of structure, and show that there is a critical threshold of structure required before algorithm-selection delivers benefit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源