论文标题

CAD:共同适应判别特征,以改善几弹性分类

CAD: Co-Adapting Discriminative Features for Improved Few-Shot Classification

论文作者

Chikontwe, Philip, Kim, Soopil, Park, Sang Hyun

论文摘要

很少有射击分类是一个具有挑战性的问题,旨在学习一个可以适应一些标签样本的模型,该模型可以适应看不见的类。最近的方法预先训练了特征提取器,然后进行微调以进行情节性元学习。其他方法利用空间特征在共同训练分类器的同时学习像素级对应。但是,使用这种方法的结果显示出边缘的改进。在本文中,受到变压器风格的自我发项机制的启发,我们提出了一种策略,以交叉和重新打击歧视性特征,以进行几次射击分类。鉴于在全球汇总后的支持和查询图像的基本表示,我们引入了一个共享的模块,该模块在两个方面都在两个方面进行项目特征和交叉分数:(i)查询以支持,以及(ii)对查询的支持。该模块计算功能之间的注意力评分,以产生同一类中特征的注意力汇总表示,后来添加到原始表示形式,然后是投影头。这有效地在两个方面(I&ii)中重新体重功能,以产生更好地改善基于度量的元学习的功能。对公共基准测试的广泛实验表明,我们的方法的表现优于最先进的方法3%〜5%。

Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples. Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning. Other methods leverage spatial features to learn pixel-level correspondence while jointly training a classifier. However, results using such approaches show marginal improvements. In this paper, inspired by the transformer style self-attention mechanism, we propose a strategy to cross-attend and re-weight discriminative features for few-shot classification. Given a base representation of support and query images after global pooling, we introduce a single shared module that projects features and cross-attends in two aspects: (i) query to support, and (ii) support to query. The module computes attention scores between features to produce an attention pooled representation of features in the same class that is later added to the original representation followed by a projection head. This effectively re-weights features in both aspects (i & ii) to produce features that better facilitate improved metric-based meta-learning. Extensive experiments on public benchmarks show our approach outperforms state-of-the-art methods by 3%~5%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源