论文标题

有效的K-clique列表,带有集体相交加速[技术报告]

Efficient k-clique Listing with Set Intersection Speedup [Technical Report]

论文作者

Yuan, Zhirong, Peng, You, Cheng, Peng, Han, Li, Lin, Xuemin, Chen, Lei, Zhang, Wenjie

论文摘要

列出所有K-Cliques是图挖掘中的一个基本问题,并在金融,生物学和社交网络分析中应用。但是,由于搜索空间的指数增长,随着K的增加,列出所有k-cliques在算法上都具有挑战性。 DDEGREE和DDEGCOL是分别基于程度订购和颜色排序的启发式序言的最新算法。 Ddegree和Ddegcol均可诱导高空和空间架空的固定交集,导致它们构建并维护所有诱导的子图。同时,实施数据级并行性以进一步加速Ddegree和ddegcol是不乏味的。 在本文中,我们提出了两种有效的算法SDEGREE和BITCOL,用于K-Clique清单。我们主要致力于加速K-Clique清单的集合交叉点。 SDEGREE和BITCOL都利用数据级并行性,以使用单个指令多个数据(SIMD)或向量指令集进一步加速。此外,我们提出了两种预核和预列列表的预处理技术,它们以线性时间运行。预处理技术可显着降低原始图的大小,并防止探索大量无效的节点。在理论分析中,我们的算法比最新算法具有可比的时间复杂性和略低的空间复杂性。综合实验表明,我们的算法的表现优于最先进的算法3.75倍,用于学位排序,平均颜色排序为5.67倍。

Listing all k-cliques is a fundamental problem in graph mining, with applications in finance, biology, and social network analysis. However, owing to the exponential growth of the search space as k increases, listing all k-cliques is algorithmically challenging. DDegree and DDegCol are the state-of-the-art algorithms that exploit ordering heuristics based on degree ordering and color ordering, respectively. Both DDegree and DDegCol induce high time and space overhead for set intersections cause they construct and maintain all induced subgraphs. Meanwhile, it is non-trivial to implement the data level parallelism to further accelerate on DDegree and DDegCol. In this paper, we propose two efficient algorithms SDegree and BitCol for k-clique listing. We mainly focus on accelerating the set intersections for k-clique listing. Both SDegree and BitCol exploit the data level parallelism for further acceleration with single instruction multiple data (SIMD) or vector instruction sets. Furthermore, we propose two preprocessing techniques Pre-Core and Pre-List, which run in linear time. The preprocessing techniques significantly reduce the size of the original graph and prevent exploring a large number of invalid nodes. In the theoretical analysis, our algorithms have a comparable time complexity and a slightly lower space complexity than the state-of-the-art algorithms. The comprehensive experiments reveal that our algorithms outperform the state-of-the-art algorithms by 3.75x for degree ordering and 5.67x for color ordering on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源