论文标题
ENHDC:用于脑启发的超二维计算的合奏学习
EnHDC: Ensemble Learning for Brain-Inspired Hyperdimensional Computing
论文作者
论文摘要
合奏学习是一种利用一组弱学习者组成一个强大学习者的经典学习方法,旨在提高模型的准确性。最近,受脑启发的高维计算(HDC)成为一种新兴的计算范式,在人类活动识别,语音识别和生物医学信号分类等各个领域都取得了成功。 HDC模拟了具有完全分布的全息表示和(假)随机性的大脑认知和利用高维矢量(例如10000个维度)。本文提出了在HDC背景下探索集成学习的第一项努力,并提出了第一个称为ENHDC的集合HDC模型。 ENHDC使用多数基于投票的机制来协同整合多个基本HDC分类器的预测结果。为了增强基本分类器的多样性,我们改变了基本分类器之间的编码机制,维度和数据宽度设置。通过在广泛的应用中应用ENHDC,结果表明,ENHDC平均可以在单个HDC分类器上提高3.2 \%的精度。此外,我们表明,具有降低性的ENHDC,例如1000个维度,可以达到相似甚至超过具有较高维度的基线HDC的准确性,例如10000个维度。这导致HDC模型的存储需求减少20 \%,这是在低功率计算平台上启用HDC的关键。
Ensemble learning is a classical learning method utilizing a group of weak learners to form a strong learner, which aims to increase the accuracy of the model. Recently, brain-inspired hyperdimensional computing (HDC) becomes an emerging computational paradigm that has achieved success in various domains such as human activity recognition, voice recognition, and bio-medical signal classification. HDC mimics the brain cognition and leverages high-dimensional vectors (e.g., 10000 dimensions) with fully distributed holographic representation and (pseudo-)randomness. This paper presents the first effort in exploring ensemble learning in the context of HDC and proposes the first ensemble HDC model referred to as EnHDC. EnHDC uses a majority voting-based mechanism to synergistically integrate the prediction outcomes of multiple base HDC classifiers. To enhance the diversity of base classifiers, we vary the encoding mechanisms, dimensions, and data width settings among base classifiers. By applying EnHDC on a wide range of applications, results show that the EnHDC can achieve on average 3.2\% accuracy improvement over a single HDC classifier. Further, we show that EnHDC with reduced dimensionality, e.g., 1000 dimensions, can achieve similar or even surpass the accuracy of baseline HDC with higher dimensionality, e.g., 10000 dimensions. This leads to a 20\% reduction of storage requirement of HDC model, which is key to enabling HDC on low-power computing platforms.