论文标题

fly进行复制:顺序匹配的随机化和协变量调整的随机化案例

Rematching on-the-fly: sequential matched randomization and a case for covariate-adjusted randomization

论文作者

Chipman, Jonathan J., Mayberry, Lindsay, Greevy Jr., Robert A.

论文摘要

协变量调整后的随机分组(CAR)可以降低协变量失衡的风险,并在分析中考虑到试验的功率。尽管有汽车的进步,但分层的随机化仍然是最常见的汽车方法。匹配的随机分组(MR)根据协变量和距离矩阵在最佳识别的对成对中随机处理治疗分配。当参与者顺序匹配,顺序匹配的随机化(SMR)时,在“ fly”中发现的匹配项随机化时,以满足预先指定的匹配阈值。但是,预先指定的理想阈值可能具有挑战性,而SMR的匹配比MR少。我们扩展了SMR,以允许多个参与者同时进行随机分组,使用动态阈值,并允许匹配匹配并在以后的匹配后匹配(顺序重新匹配的随机化; SRR)时进行折断和重新比赛。在简化的设置和现实世界应用中,我们评估这些扩展是否可以提高协变量平衡,估计器/研究效率和匹配的最佳性。我们调查是否像传统分层随机化的情况一样,是否对更多协变量进行调整是否会损害协变量和效率。作为次要目标,我们使用案例研究来评估SMR方案如何并排比较常见的和相关的汽车方案,以及设计中的协变量是否可以像在参数模型中对协变量调整协变量一样强大。我们发现每个SMR扩展名单独和集体,以提高协变量平衡,估计器效率,研究能力和匹配质量。我们提供了一个案例研究,其中具有基于随机化推理的汽车方案比具有参数调整的协变量的非车方案可以和功能更强大。

Covariate-adjusted randomization (CAR) can reduce the risk of covariate imbalance and, when accounted for in analysis, increase the power of a trial. Despite CAR advances, stratified randomization remains the most common CAR method. Matched Randomization (MR) randomizes treatment assignment within optimally identified matched pairs based on covariates and a distance matrix. When participants enroll sequentially, Sequentially Matched Randomization (SMR) randomizes within matches found "on-the-fly" to meet a pre-specified matching threshold. However, pre-specifying the ideal threshold can be challenging and SMR yields less-optimal matches than MR. We extend SMR to allow multiple participants to be randomized simultaneously, to use a dynamic threshold, and to allow matches to break and rematch if a better match later enrolls (Sequential Rematched Randomization; SRR). In simplified settings and a real-world application, we assess whether these extensions improve covariate balance, estimator/study efficiency, and optimality of matches. We investigate whether adjusting for more covariates can be detrimental upon covariate balance and efficiency as is the case of traditional stratified randomization. As secondary objectives, we use the case study to assess how SMR schemes compare side-by-side with common and related CAR schemes and whether adjusting for covariates in the design can be as powerful as adjusting for covariates in a parametric model. We find each SMR extension, individually and collectively, to improve covariate balance, estimator efficiency, study power, and quality of matches. We provide a case-study where CAR schemes with randomization-based inference can be as and more powerful than Non-CAR schemes with parametric adjustment for covariates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源