论文标题
单调蜂窝自动机的通用性
Universality for monotone cellular automata
论文作者
论文摘要
在本文中,我们在$ d $尺寸中研究单调蜂窝自动机。我们开发了一种一般方法,用于在随机选择初始配置时界定感染集的生长,然后使用此方法证明对渗透的关键概率的下限,该概率的渗透概率是每个“关键”模型中指数中恒定因素的恒定因素。这是三篇论文之一,共同确认了Bollobás,Duminil-Copin,Morris和Smith的普遍性。
In this paper we study monotone cellular automata in $d$ dimensions. We develop a general method for bounding the growth of the infected set when the initial configuration is chosen randomly, and then use this method to prove a lower bound on the critical probability for percolation that is sharp up to a constant factor in the exponent for every 'critical' model. This is one of three papers that together confirm the Universality Conjecture of Bollobás, Duminil-Copin, Morris and Smith.